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Neural network model to control an experimental chaotic pendulum
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A feedforward neural network was trained to predict the motion of an experimental, driven, and damped
pendulum operating in a chaotic regime. The network learned the behavior of the pendulum from a time series
of the pendulum’s angle, the single measured variable. The validity of the neural network model was assessed
by comparing Poincarsections of measured and model-generated data. The model was used to find unstable
periodic orbits(UPQ’s), up to period 7. Two selected orbits were stabilized using the semicontinuous control
extension, as described by De Korte, Schouten, and van den Bhmsis. Rev. E52, 3358(1995], of the
well-known Ott-Grebogi-Yorke chaos control schepRys. Rev. Lett64, 1196(1990]. The neural network
was used as an alternative to local linear models. It has two advantagesequires much less data, afio)
it can find many more UPOQO’s than those found directly from the measured time series.
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[. INTRODUCTION angle were used to obtain a complete representation of the
state. UPQ’s were found by searching the measured data for
In the last ten years, many physical systems that exhibitlose returning points, and the predictions were made by
seemingly random behavior have been demonstrated to Becal linear models, fitted directly to the measured data.
low-dimensional chaotic. In practice, the presence of chaosis A problem that we envisage when the control strategy is
often undesirable, and insights from nonlinear dynamicspplied to more complex dynamical systems, i.e., with
have been used to account for chaos in process design. At tidgher dimensiorD, is that the time needed to collect mea-
same time, Ott, Grebogi, and York®GY) [1] developed a surements for fitting local linear models becomes excessively
control scheme that can be usedeiploit chaotic behavior. long. This is because local models rely on the availability of
The OGY method is based on the observation that the attracneasured data in the neighborhood of a selected UPO. The
tor of a chaotic system typically contains an infinite numberprobability that the system visits this UPO within a certain
of unstable periodic orbit§UPQ’s). All that is needed to distance decreases exponentially withThe problem can be
change the system behavior from chaotic to periodic is t@ircumvented by using a global, nonlinear model, which uses
select one of these UPO's and stabilize it. Due to the sensall available data to fit its parameters. A second advantage of
tivity of chaotic systems for small perturbations, this can besuch a model is that it can be used to screen the system’s
achieved using only very small control actions. The possibil-attractor for periodic orbits. This is very important, because
ity to select different kinds of periodic behavior by just se-the more UPQO'’s are found, the more different kinds of sys-
lecting different UPO’s makes this type of control very ap-tem behavior can be stabilized, and the more likely it is that
pealing. the chaos control is useful in practice. Without a global
Thus far, the OGY method has been applied to simplanodel, one will only be able to find those UPO's that are
chaotic systems. To develop the chaos control methodologyisited at least several times during the measurement period.
further, and make it applicable to more complex experimen- For simple, well-defined systems, a basis for a global
tal systems, we have chosen to extend the method with model can be obtained by careful analysis of the system and
neural-network-based process model, and to first test this exts principles. In practice, this is often not possible, and as an
tension on a comprehensive experimental system, a drivealternative, a general model structure can be adopted that
and damped pendulum. For control, one ne@fs method “learns” its parameters from measured behavior. A common
to find UPO'’s, andii) a model that can predict future states type of such a self-learning model is the multilayer feedfor-
of the system from the present, measured statebitdier ~ ward neural network. We have applied this kind of modeling
et al. [2] controlled a pendulum of which all the state vari- to the pendulum in order to further generalize the chaos con-
ables were measured. They used the equations of motion teol methodology. In the future we wish to control the cha-
calculate UPO’s and to make predictions, and they develetic hydrodynamics of a gas-solids fluidized bed reaf4dr
oped a semicontinuous cont@CQ extension of the OGY to enhance chemical conversion and selectivity.
method to cope with the large unstable eigenvalues of the In this paper, we present the results of a neural-network-
stabilized UPOs. De Korte, Schouten, and van den B[8&k based model for the driven pendulum. First, the problem of
controlled a different, less ideal pendulum of which only onemodeling a chaotic system is defined and a description is
state variable, its angle, was measured. Delayed values of tlygven of the type of neural network we usé8ec. I). The
pendulum and the measurements are descrilset. IlI).
Then it is shown how we selected inputs and outputs of the
*Electronic address: r.bakker@stm.tudelft.nl model (Sec. IV). The network model is trainedSec. V),
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ondand subsequent layers is assigned an actavitich is a
linear combination of the outputs of the nodes in the previ-
ous layer:

| .Qrtl_Q” P
6'-6 a'q:pzl (Wpe0p D)+ by, 2

whereay, is the activity of theqth node in layet, 0, * is the

output of thepth node inI Iayerl—ll, P is the number of

FIG. 1. Schematic representation of the MLP model for thenOdeS in layei —1, and,wpq andbq are adjustable param-
eters of the node called weights and biases, respectively. The

chaotic pendulum with inputs and outputs taken from ELp). L . . . L
Shown is an MLP network, having six input nodes, eight nonlinearf’iCtIVIty of nodes in the fIrSt.layer is equal to th¢single
pput. The output of a node is calculated from

nodes in a single hidden layer, and one output node. Linear nodd
are represented by empty circles, sigmoidal nodes by circles filled
with ans curve. o'q: h(a'(}), 3)

validated(Sec. VI, and then used to find UPO(Sec. VI). ~ whereh is a transfer function. In the input and output layers,
Finally, it is applied to stabilize two different UPO’s of the h s linear while in the hidden layers it is sigmoidal, i.e.,

driven pendulumSec. VII). bounded and monotonically increasing. As a sigmoidal func-
tion, we used a—fast to compute—spline approximation of
Il. NEURAL NETWORK MODELING the hyperbolic tangent
The evolution of a deterministic chaotic system in discrete -1 a<—2
time is given by the map '
i1a’+a, —2=a<o0
Zn+1=F(Zn), (1) h(a)= 1 (4)

—%a’+a, O=as2
N . 1, a>2.
whereZ" is the state of the system at timg=t+nAt. The
modeling of an experimental chaotic system consists of two
Steps:(i) find a representation of the stafe in terms of If the size of a neural network is not sufficient to approxi—
variables that can be measured; @hﬁapproximate the non- Mate the objective function, it can be made more flexible by
linear functionF, using information from measured time se- adding more nodes and/or layers to the network. It has been
ries 0n|y_ For the first Step’ in princip|e On|y the measure-ShOWn, on the one hand, that a network with a Single hidden
ment of a single variable is needéﬁ]_ The system’s state Iayer that contains an infinite number of Singida' nodes is
can be represented by a sequence of delayed values of ttigfficient to approximate any nonlinear functid]. On the
variable. This procedure, known as delay coordinate embedther hand, our experience has shown that a second hidden
ding, is outlined in Sec. IIl for the special case of the pen-layer in some cases greatly reduces the total required number
dulum. For the second step, an appropriate nonlinear basf nodes and makes the neural network approximation more
functionf,(Z) must be chosen, where the parametersan ~ smooth.
be varied to adjust the shape fgfin order to minimize the Training an MLP is adjusting its parametavsin order to
difference betweefr andf,. In a large number of studies, Minimize the difference betwedf(Z) andf,(Z) for a given
e.g.,[6-9], multilayer feedforward neural networkEFN's) set of N measurements. Taking the quadratic norm, the error
have been used to serve as a model strudy,fer chaotic ~ function becomes
dynamical systems. FFN’'s generate very smooth functions
that are not easily disturbed by noise. Other optionsffpr N
include polynomialNARMAX models[10] and radial basis E(w)= 2, |fu(Z™—F(Z")|2. (5)
functions[11,17. Our choice of FFN's is based on the ad- n=1
vantages of FFN'’s over polynomial models, in that their out-
put is bounded so there is no danger that the model will béAs recommended ifiL5], we have used the conjugate gradi-
unstable. Radial basis functions suffer from the same probent method to solve the nonlinear minimization problem. The
lem as local linear models; they both rely on the availabilityderivativesiE/ dw are calculated analytically using the back-
of local information. propagation algorithnid13]. Initially, the weights are chosen
The structure of the most common FFN, the multilayerrandomly and smal(<0.1). This makes that the output of
perceptron(MLP) [13], is as follows. The network consists the MLP is initially zero for any input. During training, the
of nodes that are arranged in layers. As a convention, theeights increase, and the MLP gradually approximdtes
notation MLR ;14> o denotes a network withinputs,H1  Training is stopped when the error does not decrease more
nodes in the first hidden layas2 in the second, etc., a@  than 5% in 500 conjugate gradient iterations or when the
outputs. A schematic representation of, as an example, prediction error on an independent test data set starts to in-
MLPg g 1 network is shown in Fig. 1. Each node in the sec-crease. Typically, this requires about 2000 iterations.
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idea about the complexity of the system, we first look at the

(V]
% equations of motion of an ideal driven and damped pendu-
0 8 lum. These equations are in dimensionless form,
=]
E d o w
wx = o T o |=| —yw—sin 8+ a sing+p |, (6)
¢ wp

whered is the angle of the pendulura its angular velocity,

FIG. 2. Schematic drawing of the pendulum and its driving ¥ iS @ damping constangp is the additional driving torque

torque signal. The pendulum arm can rotate around its axis, th§hat can be used to perturb the system, @ndy, ,¢) are the
angle ¢ is measured. During the experiments, the frequency of th@mplitude, frequency, and phase, respectively, of the har-

driving torque was 0.85 Hz. monic driving torque. In our experimental set{§ec. I\V) we
can only measure the angleln addition, the phase of the
IIl. PENDULUM MODEL applied driving torque and the additional driving torgéie

are known. The most straightforward application of delay
In this section, we describe how a suitable model structureoordinate embedding would be to adopt the following neu-
for our experimental pendulum was obtained. To obtain amal network prediction model:

0n+1:fw(0n,an—l’.__'an—d-%—l'(z)n’5pn,5pn—1’n_’5pn—r+l)’ (7)

wheref,, is an MLP networkn is the discrete time indexi is the number of delay coordinates used, ars the number of
(pas} control actions. According to Dressler and Nits¢é], r must be taken equal @. Unfortunately, in Eq(7) the inputs

0 and ¢ are angles that are only defined in the intef\{gP]. It is desirable that the neural network treats an angle of almost
zero the same as an angle of almost Zherefore, as an alternative to E) we use

0" 1= 0"+1,(sing",coss", A0",.... A" 92 sing", cosp”, Sp", op"L,...,op" 4T, (8)

where ¢" is replaced by sid' and co#", ¢" by sing" and  the delay coordinate approximation @f and(iii) deviations
cosg", and where théth delay coordinaté” ' 1 is replaced  from ideal behavior of the pendulum. The predictionsbt
by Ag" 1 +2=gn"1H2_ gn—itl in Eq. (10) can be written as

To understand why this specific delay coordinate embed-
ding works, it is interesting to see what kind of model is
obtained if we derive a discrete time model from the equa- g 1= 6"+ F(sing",sing", A 6", 5p"). (13)
tions of motion[Eq. (6)]. These equations suggest to use
w, and ¢ as state variables. Since we can only measure the
angled we use a delay coordinate 8instead ofw. The state  We see that the model inputs of Ed.1) are a subset of the
vector[Eq. (1)] then becomes model inputs of Eq(8).

n_ n n—1 mT
Zi=(0%67 %) ©) IV. MEASUREMENTS

The discrete timen is related to real time by t,=t,+nAt. The pendulum we use is a type EM-50 pendulum pro-
If At is small, then an approximation of the functirin Eq. ~ duced by Daedalon Corporation; 48] for details and Fig.
(1) can be obtained using an Euler approximation of the sef for @ schematic drawing. We have obsery8di that the
of differential equations(6). After substitution of" by  motion of the pendulum deviates from the ideal behavior
6"— 6", this yields the following model structure: expressed in Eq(6), because of the four electromagnetic
driving coils that repulse the pendulum at certain positions
(up, down, left, and right Two different time series were

ot (1= y)A#"—sing"+a sin ¢"+ op" measured from the pendulum, one for the unperturbed sys-

Al 6" | = A" : tem and one for the perturbed system. The first is used to
Pt wpAt construct Poincar@lots, the second for training the neural
(20 network model. The sampling intervaAlt was takens; of a
driving cycle,

It can be seen from Eq10) that the prediction of" is
trivial, and that the prediction op"** is obtained by defini-
tion. Therefore, errors will arise only in the prediction of
¢"*1, and they will be due tdi) the Euler approximatioriji)

_2771

M=o g (12)
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V. NETWORK TRAINING AND VALIDATION

Here we present the results of the neural network model
that we selected to give the best performance. It uses one
delay coordinatéd =2) and does not use the proposed input
cosp. The network has one hidden layer containing 16
nodes. It is shown schematically in Fig. 1, and using the
notation from Sec. Il it can be written

0" 1= 0" +1,,(sine",co", 6" — 0" 1,

sing", sp", sp" 1), (13

with f,, an MLP; 15 1. Apart from this network, we trained
networks with an extra delay coordinate, with goas an
extra input, with no hidden layer at all, and with half and
with twice the number of nodes in the hidden layer. None of
these networks gave smaller prediction errors. The networks
were trained using the first 5000 points of a time series of
15 000 data points. The last 5000 points were used for test-
ing. As mentioned in Sec. Il, the networks are initialized
with small random weights. It is found that training the neu-
ral networks more than once with different random initial
weights yields approximately the same prediction error.

The most straightforward way to compare the accuracy of
different models is to look at their one-step-ahead prediction
errors on an independent test data set. Table | shows the
. root-mean-squared errofRMSE’s) of the MLP; ;5 ;and, for
%0 180 comparison, of the model with no hidden layer. For the latter
model, Eq.(13) becomes

6"t 1= 9"+ w(sind",co", 6"— 0" 1, sing", sp", sp"HT
+b, (14)

and because this model is linear in its parameters we refer to
it as the LP model. The RMSE of the neural network model
is twice as low as that of the LP model, which is a consid-
erable improvement. Note that although the number of 129
adjustable parameters of the ML ; model is large com-
pared to the seven parameters of the LP model, the ratio
between the number of parameters and amount of data of
- . 129/5000 is still low, and from the error on the independent
) -180 -90 0 90 180 test data set it can be seen that no overfitting has occurred.
The measurement of the angle of the pendulum is done with
12-bit accuracy, corresponding to a maximum error of about
0.1°. The neural network RMSE is about 3.5 times higher
FIG. 3. Poincareplots of measured time seridg) and time  than this value, either due to inadequacy of the model or due
series generated by the linear-in-the-param@t® model(b) and  to the unpredictability of the chaotic system. This unpredict-
the MLP; 16, model(c). Each plot shows 20 000 point8,A6) s—e, ability can be assessed by calculating the sum of positive
whereAd is defined by6,,_o-—6,-_1;- The plots clearly show the Lyapunov exponents of the system, which gives a measure
fractal geometry of both the real system and the two models. of the loss of information per unit time. For the pendulum,

TABLE |. Comparison of prediction error for neural network
The perturbed system had an external driving force, i.e., thand LP model. Also included is the largest Lyapunov exponesft
control action, changed randomly every fourth time stepgach model.
with a uniform distribution between plus and minus 5% of

the driving torque amplitude. The perturbations were stored MLP.6,16,1 LP model
together with the measured time series. The driving f_reRMSE training data 0.35° 0.63°
quency was 0.85 Hz, and the pendulum was operated in gy\ise test data 0.36° 0.62°
chaotic regime, as can be seen from the fractal geometry q\f(bits/period 25 22

the measured Poincapdot [Fig. 3@)].
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FIG. 4. Prediction surface generated by the neural network m@jleThe surface shows how to predis¥,,_,g0- from a given state
(6,A60) y—ge. The Poincarelot of the measured time series, as shown in Fg), 3s superimposed on the surface. The surface shows regions
where the motion of the pendulum can be well predi¢fed surfaceé and regions where much information is Igsteep surfage In (b), the
link between loss of information and steepness of the prediction surface is explained. The steeper the prediction surface, the larger the error
(%) in the prediction of the statZ" ! will be compared to the erraf® in the estimation of the current stafé.

this sum equals the largest Lyapunov exponent since this is For a three-dimensional chaotic system, a very convenient
the only positive one. This follows from the following two way to validate a model for the system is to compare its
observations. Poincareplot to that of the measured data. For the experi-
(i) One of the three Lyapunov exponents is z¢i@), mental pendulum, the Poincapdot is obtained by plotting
corresponding to the fact that the phase of the driving forcepoints (6,A6) sampled at a constant value of the driving

can be predicted without information loss. phasep, ¢=(27/ wp)t mod 2m, in a two-dimensional space.
(i) The sum of all exponents must be negative, as thdo calculate a Poincargection of a prediction model, a time
system is dissipative. series generated by the model is needed. This is done by

The procedure outlined by Wobt al. [19] was used to initializing the model with an arbitrary state, predict 2000
compute the largest Lyapunov exponentf both models, driving cycles (each driving cycle consisting of 32 time
calculated values are shown in Table |. The Lyapunov expostep$ ahead to let transients die out, and then predict 20000
nent of 2.5 bits/period for the MLP model implies that if we driving cycles ahead, taking a sample each time the driving
know the initial conditions with 12-bit accuracy, we can pre-phase is zero. Poincagots of measured, LP model, and
dict the state after one time stép period with 12—2.5/32  MLP generated data are shown in Fig&)3-3(c). Note that
=11.9 bits precision, on the average. The 0.1 bit that wedue to the use of the nonlinear terms éinand cosd" as
have lost is far less than the RMSE of the model; thereforanodel inputs it is here possible to represent a chaotic system
we cannotsubscribe a substantial part of the model error toby a network without a nonlinear hidden layer. The LP
the unpredictability of the system. It must be either the repmodel does capture the overall shape of the attractor, but the
resentation of the staf® or the error in the approximation of wrinkles occurring at length scales of about 10° are not cap-
the system functiorr that causes the model error. tured by the model. The MLP model more closely resembles

0°

-360°

720 0° 360° 0° 360° 720° 1080° 1440° 1800° 2160° 2520°

(@ o (o) ¢

FIG. 5. Unstable periodic orbits of periodd and period 7b), as calculated from the neural network model. Here the afig@llowed
to move outside the interval 0—360° to avoid having discontinuities in the plots. The definition of an UPO requires equal values of
#mod 360° and equal values af9 (slope of the curveat the beginning and end of the orbits.
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n+1

-

.0Z"

‘s‘éi’nﬂ(épn:o)

¢ growths to an erroe?! if the steepness of the prediction
curve is larger than 1. Since we are dealing with a chaotic

system the average error growth will be positive, correspond-
ing to a positive largest Lyapunov exponent. The prediction
’Q . surface can be compared with Fig. 2[&], which shows the
Vit local Lyapunov exponent as a function of position on the
Poincareplot of an ideal pendulurfiEq. (6)].

n+2 VIl. SEARCH FOR UNSTABLE PERIODIC ORBITS

For a chaotic system with a periodic driving signal, the
duration of a periodic orbit must be an integer multiple of the
period of the signalbecause the phase of the driving signal
is included in the state of the systgro, when the system is
following an UPO, the state at discrete timewill be equal
to the state at time+pT, with p the (intege) period of the

FIG. 6. Explanation of the SCC control algorithm. The figure UPO andT the (intege) number of samples per driving pe-
shows three successive maps. The dot at the center of the maggd. The search for UPO’s is thus to find a sta@t® that
indicates its fixed point, the dot labeléZ" the deviation from the obeys
fixed point. At timen the system can be steered to any point on the
dashed line through 6Z"*! (6p"=0) with direction
DspF(Z,8p",8p" ). Now, as a control criterion, the choice is
made to steer to the axis (obtained with singular value decom- whereZ""PT is calculated fronz", applying
position that corresponds to the maximum shrinking axjsi, at
the next transition map at time+2 (see Ref[3]).

z"teT=zn, (15)

Z"=F(Z") (16)
T times. To find an UPO of preselected peripdan arbi-

the measured attractor, but one can see that there is still rooh

niti n ; . .
for improvement. We have chosen not to further optimize thérlagy, 'n't":‘_l fs,t"’(‘jteid,'s tchosten, and IthelntangSted UT” Et?] t
model but to test whether it is satisfactory in its use for chaos> IS satisfied. Adjustments are calculated by a routine tha
control. minimizes the error

E=|lz"PT—2z"2. 17
VI- PREDICTION SURFACE An UPO is found when the error decreases to zero. A differ-
Each point on the two-dimensioné2D) Poincareplots  ent initial state must be tried when the error does not reach
shown in Figs. 88)—3(c), represents a stat®,A6,¢) of the  zero. For the minimization we used the conjugate gradient
system, with¢=0. We can extend the plot to a 3D picture algorithm[20]. Since we use a neural network to approxi-
and use the extra dimension to plot the prediction of one ofnate F, derivativesdE/9Z" can be calculated with back-
the state variables. The prediction surface we then get showsopagation through timg21]. The algorithm makes it pos-
the nonlinearity of the system. In Fig(a} we have plotted sible to search systematically for UPO’s of a preselected
the prediction surface ak6, with a prediction time of half a period, just by trying many different initial states. In Fig. 5
driving period (16 time steps The local steepness of the we show a typical period-1 UP@) and a period-7 UPQb).
surface has a direct relation to the information loss. This isSection VIII describes how these UPO’s were stabilized us-
illustrated in Fig. 4b), where it is shown how an initial error ing the SCC method.

180° 180°
X - . .
Lt ereratrareiatestenitatartesstrteretad
) o
[ [
0° Y 0% N eeeieertrear e aie e e e anas
. . . ~»controlled o .
& & | e
“» controlled
180° R PO BT Y PNV P P PP
0 50 100 150 0 50 100 150 200 250 300
(@) time [driving periods] (b) time [driving periods]

FIG. 7. The effect of control is shown by plotting the anglsampled once each driving cycle. For the period-1 UBQIt takes a while
before the system is close enough to the UPO to enable control. From then on, the angle will have the same value each driving cycle. For
the period-7 UPQb), the angle is the same each seventh driving cycle.
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action is 60 times lower than the variance of the driving
0.5 force.
04} |
0.3f
0.2}

0.1}

IX. CONCLUDING REMARKS

A multilayer feedforward neural network has been devel-
oped that can accurately predict the motion of a chaotic pen-
dulum. The network is trained on a time series of a single
measured variable; additional information about the state of
the system is obtained from delayed values of this variable,
and from the phase of the external driving force.

Poincaresections of measured data and model generated
0 o5 : 5 ; 25 s 35 data show that the neural network model has captured the

time (s) system’s dynamics well. The prediction surface that can be
computed from the neural network model gives a compre-

FIG. 8. The driving force of the penduluwoltage sent out by hensive insight into the nonlinearity and local predictability
control computer, with superimposed on it the control action dur- of the pendulum.

torque (V)
(=]

0.1
-0.2f
—0.3}
-0.4}
-0.5F

ing stabilization of the period-7 UPO shown in Figbh The vari- The neural network was used to find unstable periodic
ance of the control action is less than 60 times that of the drivingorbits of the system, and these orbits were stabilized with the
force. SCC method. This way, two very different kinds of periodic

behaviors were stabilized, applying only very small control
actions. The advantages of the neural network approach over
VIIl. APPLYING CHAOS CONTROL the use of local linear models is th@t they offer the possi-
In the papers by Fhinger etal. [2] and De Korte, bility to screen the syste_m’s attractor for UPQO’s, digithey

Schouten, and van den Bleg8], it is described how chaos Make use of all the available data. .
control of the pendulum can be achieved using a semicon- The results obtained in this study of a simple but real and
tinuous control(SCQO extension of the well-known OGY nonideal experllm'ental system show that, in order to achieve
control scheme. The algorithm changes the control paramet&h@0s control, it is not necessary to measure more than one
several times per periodic orbit and uses singular value dé?f the system’s state variables and that the equ_atlons of mo-
composition to calculate a maximum shrinking axis; see Figlion of the system need not be known. We believe that the
6 for a brief explanation. Fhingeret al. used the equations USe of self-learning models such as neural networks makes
of motion of the pendulum as a prediction model, wherea$?GY control applicable to a wide variety of chaotic systems.
De Korte, Schouten, and van den Bleek used local lineal" future work, we intend to show that the combination of
models, based on delay coordinates, that were fitted direct/§e!f-l€arning models such as neural networks and SCC con-
to measured data in the neighborhood of a selected UPO. 0! is useful in controlling and stabilizing higher-
global neural network model provides a third way to createdimensional, experimental systems. As a next step, we will
local linear models. A local linear model is equal to the localbuild @ neural network model that does not use any knowl-
gradient, or Jacobian, of the global model. For a neural nettdge about the external driving force applied to the pendu-
work, this gradient is easily obtained with back-propagationUm, but uses extra delay coordinates of the measured angle
or, if the local linear model has to predict more than onelnstead. Then we will extend the method to spatiotemporal

sampling time ahead, with back-propagation through timechaotic systems, for which it may be necessary to use mul-

The advantage of this approach is that it does not require fuple measurements_of thg same vanable_ at d|fferen_t locations

priori knowledge of the system, and that it does not requird” the system. The final aim of the work is to experimentally

that the system has visited the selected UPO during the me§ontrol the chaotic hydrodynamics of a gas-solids fluidized

surement period. _bed reactof4] to enhance chemical conversion and selectiv-
The control experiments differ from those of RE3] in Y-

how the UPO’s are found and how local linear models are

obtained.. The reader is referreq to this paper for a detailed ACKNOWLEDGMENTS
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