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A feedforward neural network was trained to predict the motion of an experimental, driven, and damped
pendulum operating in a chaotic regime. The network learned the behavior of the pendulum from a time series
of the pendulum’s angle, the single measured variable. The validity of the neural network model was assessed
by comparing Poincare´ sections of measured and model-generated data. The model was used to find unstable
periodic orbits~UPO’s!, up to period 7. Two selected orbits were stabilized using the semicontinuous control
extension, as described by De Korte, Schouten, and van den Bleek@Phys. Rev. E52, 3358 ~1995!#, of the
well-known Ott-Grebogi-Yorke chaos control scheme@Phys. Rev. Lett.64, 1196~1990!#. The neural network
was used as an alternative to local linear models. It has two advantages:~i! it requires much less data, and~ii !
it can find many more UPO’s than those found directly from the measured time series.
@S1063-651X~96!09910-2#

PACS number~s!: 05.45.1b, 84.35.1i

I. INTRODUCTION

In the last ten years, many physical systems that exhibit
seemingly random behavior have been demonstrated to be
low-dimensional chaotic. In practice, the presence of chaos is
often undesirable, and insights from nonlinear dynamics
have been used to account for chaos in process design. At the
same time, Ott, Grebogi, and Yorke~OGY! @1# developed a
control scheme that can be used toexploit chaotic behavior.
The OGY method is based on the observation that the attrac-
tor of a chaotic system typically contains an infinite number
of unstable periodic orbits~UPO’s!. All that is needed to
change the system behavior from chaotic to periodic is to
select one of these UPO’s and stabilize it. Due to the sensi-
tivity of chaotic systems for small perturbations, this can be
achieved using only very small control actions. The possibil-
ity to select different kinds of periodic behavior by just se-
lecting different UPO’s makes this type of control very ap-
pealing.

Thus far, the OGY method has been applied to simple
chaotic systems. To develop the chaos control methodology
further, and make it applicable to more complex experimen-
tal systems, we have chosen to extend the method with a
neural-network-based process model, and to first test this ex-
tension on a comprehensive experimental system, a driven
and damped pendulum. For control, one needs~i! a method
to find UPO’s, and~ii ! a model that can predict future states
of the system from the present, measured state. Hu¨binger
et al. @2# controlled a pendulum of which all the state vari-
ables were measured. They used the equations of motion to
calculate UPO’s and to make predictions, and they devel-
oped a semicontinuous control~SCC! extension of the OGY
method to cope with the large unstable eigenvalues of the
stabilized UPOs. De Korte, Schouten, and van den Bleek@3#
controlled a different, less ideal pendulum of which only one
state variable, its angle, was measured. Delayed values of the

angle were used to obtain a complete representation of the
state. UPO’s were found by searching the measured data for
close returning points, and the predictions were made by
local linear models, fitted directly to the measured data.

A problem that we envisage when the control strategy is
applied to more complex dynamical systems, i.e., with
higher dimensionD, is that the time needed to collect mea-
surements for fitting local linear models becomes excessively
long. This is because local models rely on the availability of
measured data in the neighborhood of a selected UPO. The
probability that the system visits this UPO within a certain
distance decreases exponentially withD. The problem can be
circumvented by using a global, nonlinear model, which uses
all available data to fit its parameters. A second advantage of
such a model is that it can be used to screen the system’s
attractor for periodic orbits. This is very important, because
the more UPO’s are found, the more different kinds of sys-
tem behavior can be stabilized, and the more likely it is that
the chaos control is useful in practice. Without a global
model, one will only be able to find those UPO’s that are
visited at least several times during the measurement period.

For simple, well-defined systems, a basis for a global
model can be obtained by careful analysis of the system and
its principles. In practice, this is often not possible, and as an
alternative, a general model structure can be adopted that
‘‘learns’’ its parameters from measured behavior. A common
type of such a self-learning model is the multilayer feedfor-
ward neural network. We have applied this kind of modeling
to the pendulum in order to further generalize the chaos con-
trol methodology. In the future we wish to control the cha-
otic hydrodynamics of a gas-solids fluidized bed reactor@4#
to enhance chemical conversion and selectivity.

In this paper, we present the results of a neural-network-
based model for the driven pendulum. First, the problem of
modeling a chaotic system is defined and a description is
given of the type of neural network we used~Sec. II!. The
pendulum and the measurements are described~Sec. III!.
Then it is shown how we selected inputs and outputs of the
model ~Sec. IV!. The network model is trained~Sec. V!,*Electronic address: r.bakker@stm.tudelft.nl
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validated~Sec. VI!, and then used to find UPO’s~Sec. VII!.
Finally, it is applied to stabilize two different UPO’s of the
driven pendulum~Sec. VIII!.

II. NEURAL NETWORK MODELING

The evolution of a deterministic chaotic system in discrete
time is given by the map

Zn115F~Zn!, ~1!

whereZn is the state of the system at timetn5t1nDt. The
modeling of an experimental chaotic system consists of two
steps:~i! find a representation of the stateZ in terms of
variables that can be measured; and~ii ! approximate the non-
linear functionF, using information from measured time se-
ries only. For the first step, in principle only the measure-
ment of a single variable is needed@5#. The system’s state
can be represented by a sequence of delayed values of this
variable. This procedure, known as delay coordinate embed-
ding, is outlined in Sec. III for the special case of the pen-
dulum. For the second step, an appropriate nonlinear basis
function fw~Z! must be chosen, where the parametersw can
be varied to adjust the shape offw in order to minimize the
difference betweenF and fw . In a large number of studies,
e.g.,@6–9#, multilayer feedforward neural networks~FFN’s!
have been used to serve as a model structurefw for chaotic
dynamical systems. FFN’s generate very smooth functions
that are not easily disturbed by noise. Other options forfw
include polynomialNARMAX models @10# and radial basis
functions@11,12#. Our choice of FFN’s is based on the ad-
vantages of FFN’s over polynomial models, in that their out-
put is bounded so there is no danger that the model will be
unstable. Radial basis functions suffer from the same prob-
lem as local linear models; they both rely on the availability
of local information.

The structure of the most common FFN, the multilayer
perceptron~MLP! @13#, is as follows. The network consists
of nodes that are arranged in layers. As a convention, the
notation MLPI ,H1,H2,...,O denotes a network withI inputs,H1
nodes in the first hidden layer,H2 in the second, etc., andO
outputs. A schematic representation of, as an example, a
MLP6,8,1 network is shown in Fig. 1. Each node in the sec-

ondand subsequent layers is assigned an activitya which is a
linear combination of the outputs of the nodes in the previ-
ous layer:
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whereh is a transfer function. In the input and output layers,
h is linear while in the hidden layers it is sigmoidal, i.e.,
bounded and monotonically increasing. As a sigmoidal func-
tion, we used a—fast to compute—spline approximation of
the hyperbolic tangent
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~4!

If the size of a neural network is not sufficient to approxi-
mate the objective function, it can be made more flexible by
adding more nodes and/or layers to the network. It has been
shown, on the one hand, that a network with a single hidden
layer that contains an infinite number of sigmoidal nodes is
sufficient to approximate any nonlinear function@14#. On the
other hand, our experience has shown that a second hidden
layer in some cases greatly reduces the total required number
of nodes and makes the neural network approximation more
smooth.

Training an MLP is adjusting its parametersw in order to
minimize the difference betweenF~Z! and fw~Z! for a given
set ofN measurements. Taking the quadratic norm, the error
function becomes

E~w!5 (
n51

N

i fw~Zn!2F~Zn!i2. ~5!

As recommended in@15#, we have used the conjugate gradi-
ent method to solve the nonlinear minimization problem. The
derivatives]E/]w are calculated analytically using the back-
propagation algorithm@13#. Initially, the weights are chosen
randomly and small~,0.1!. This makes that the output of
the MLP is initially zero for any input. During training, the
weights increase, and the MLP gradually approximatesF.
Training is stopped when the error does not decrease more
than 5% in 500 conjugate gradient iterations or when the
prediction error on an independent test data set starts to in-
crease. Typically, this requires about 2000 iterations.

FIG. 1. Schematic representation of the MLP model for the
chaotic pendulum with inputs and outputs taken from Eq.~13!.
Shown is an MLP network, having six input nodes, eight nonlinear
nodes in a single hidden layer, and one output node. Linear nodes
are represented by empty circles, sigmoidal nodes by circles filled
with an s curve.
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III. PENDULUM MODEL

In this section, we describe how a suitable model structure
for our experimental pendulum was obtained. To obtain an

idea about the complexity of the system, we first look at the
equations of motion of an ideal driven and damped pendu-
lum. These equations are in dimensionless form,

d

dt S u
v
f
D 5S v

2gv2sin u1a sinf1dp
vD

D , ~6!

whereu is the angle of the pendulum,v its angular velocity,
g is a damping constant,dp is the additional driving torque
that can be used to perturb the system, and~a,vD ,f! are the
amplitude, frequency, and phase, respectively, of the har-
monic driving torque. In our experimental setup~Sec. IV! we
can only measure the angleu. In addition, the phasef of the
applied driving torque and the additional driving torquedp
are known. The most straightforward application of delay
coordinate embedding would be to adopt the following neu-
ral network prediction model:

un115fw~un,un21,...,un2d11,fn,dpn,dpn21,...,dpn2r11!, ~7!

wherefw is an MLP network,n is the discrete time index,d is the number of delay coordinates used, andr is the number of
~past! control actions. According to Dressler and Nitsche@16#, r must be taken equal tod. Unfortunately, in Eq.~7! the inputs
u andf are angles that are only defined in the interval@0,2p#. It is desirable that the neural network treats an angle of almost
zero the same as an angle of almost 2p. Therefore, as an alternative to Eq.~7! we use

un115un1fw~sinun,cosun,Dun,...,Dun2d12,sinfn,cosfn,dpn,dpn21,...,dpn2d11!, ~8!

whereun is replaced by sinun and cosun, fn by sinfn and
cosfn, and where thei th delay coordinateun2 i11 is replaced
by Dun2 i125un2 i122un2 i11.

To understand why this specific delay coordinate embed-
ding works, it is interesting to see what kind of model is
obtained if we derive a discrete time model from the equa-
tions of motion@Eq. ~6!#. These equations suggest to useu,
v, andf as state variables. Since we can only measure the
angleu we use a delay coordinate ofu instead ofv. The state
vector @Eq. ~1!# then becomes

Zn5~un,un21,fn!T. ~9!

The discrete timen is related to real timet by tn5t01nDt.
If Dt is small, then an approximation of the functionF in Eq.
~1! can be obtained using an Euler approximation of the set
of differential equations~6!. After substitution ofvn by
un2un21, this yields the following model structure:

DS un11

un

fn11
D 'S ~12g!Dun2sinun1a sin fn1dpn

Dun

vDDt
D .

~10!

It can be seen from Eq.~10! that the prediction ofun is
trivial, and that the prediction offn11 is obtained by defini-
tion. Therefore, errors will arise only in the prediction of
un11, and they will be due to~i! the Euler approximation,~ii !

the delay coordinate approximation ofv, and~iii ! deviations
from ideal behavior of the pendulum. The prediction ofun11

in Eq. ~10! can be written as

un115un1F~sinun,sinfn,Dun,dpn!. ~11!

We see that the model inputs of Eq.~11! are a subset of the
model inputs of Eq.~8!.

IV. MEASUREMENTS

The pendulum we use is a type EM-50 pendulum pro-
duced by Daedalon Corporation; see@17# for details and Fig.
2 for a schematic drawing. We have observed@3# that the
motion of the pendulum deviates from the ideal behavior
expressed in Eq.~6!, because of the four electromagnetic
driving coils that repulse the pendulum at certain positions
~up, down, left, and right!. Two different time series were
measured from the pendulum, one for the unperturbed sys-
tem and one for the perturbed system. The first is used to
construct Poincare´ plots, the second for training the neural
network model. The sampling intervalDt was taken1

32 of a
driving cycle,

Dt5
2p

vD

1

32
. ~12!

FIG. 2. Schematic drawing of the pendulum and its driving
torque signal. The pendulum arm can rotate around its axis, the
angleu is measured. During the experiments, the frequency of the
driving torque was 0.85 Hz.
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The perturbed system had an external driving force, i.e., the
control action, changed randomly every fourth time step,
with a uniform distribution between plus and minus 5% of
the driving torque amplitude. The perturbations were stored
together with the measured time series. The driving fre-
quency was 0.85 Hz, and the pendulum was operated in a
chaotic regime, as can be seen from the fractal geometry of
the measured Poincare´ plot @Fig. 3~a!#.

V. NETWORK TRAINING AND VALIDATION

Here we present the results of the neural network model
that we selected to give the best performance. It uses one
delay coordinate~d52! and does not use the proposed input
cosf. The network has one hidden layer containing 16
nodes. It is shown schematically in Fig. 1, and using the
notation from Sec. II it can be written

un115un1fw~sinun,cosun,un2un21,

sinfn,dpn,dpn21!, ~13!

with fw an MLP6,16,1. Apart from this network, we trained
networks with an extra delay coordinate, with cosf as an
extra input, with no hidden layer at all, and with half and
with twice the number of nodes in the hidden layer. None of
these networks gave smaller prediction errors. The networks
were trained using the first 5000 points of a time series of
15 000 data points. The last 5000 points were used for test-
ing. As mentioned in Sec. II, the networks are initialized
with small random weights. It is found that training the neu-
ral networks more than once with different random initial
weights yields approximately the same prediction error.

The most straightforward way to compare the accuracy of
different models is to look at their one-step-ahead prediction
errors on an independent test data set. Table I shows the
root-mean-squared errors~RMSE’s! of the MLP6,16,1and, for
comparison, of the model with no hidden layer. For the latter
model, Eq.~13! becomes

un115un1w~sinun,cosun,un2un21,sinfn,dpn,dpn21!T

1b, ~14!

and because this model is linear in its parameters we refer to
it as the LP model. The RMSE of the neural network model
is twice as low as that of the LP model, which is a consid-
erable improvement. Note that although the number of 129
adjustable parameters of the MLP6,16,1 model is large com-
pared to the seven parameters of the LP model, the ratio
between the number of parameters and amount of data of
129/5000 is still low, and from the error on the independent
test data set it can be seen that no overfitting has occurred.
The measurement of the angle of the pendulum is done with
12-bit accuracy, corresponding to a maximum error of about
0.1°. The neural network RMSE is about 3.5 times higher
than this value, either due to inadequacy of the model or due
to the unpredictability of the chaotic system. This unpredict-
ability can be assessed by calculating the sum of positive
Lyapunov exponents of the system, which gives a measure
of the loss of information per unit time. For the pendulum,

FIG. 3. Poincare´ plots of measured time series~a! and time
series generated by the linear-in-the-parameter~LP! model ~b! and
the MLP6,16,1model~c!. Each plot shows 20 000 points~u,Du!f50°,
whereDu is defined byuf50°2uf5211°. The plots clearly show the
fractal geometry of both the real system and the two models.

TABLE I. Comparison of prediction error for neural network
and LP model. Also included is the largest Lyapunov exponentl of
each model.

MLP:6,16,1 LP model

RMSE training data 0.35° 0.63°
RMSE test data 0.36° 0.62°
l ~bits/period! 2.5 2.2
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this sum equals the largest Lyapunov exponent since this is
the only positive one. This follows from the following two
observations.

~i! One of the three Lyapunov exponents is zero@18#,
corresponding to the fact that the phase of the driving force
can be predicted without information loss.

~ii ! The sum of all exponents must be negative, as the
system is dissipative.

The procedure outlined by Wolfet al. @19# was used to
compute the largest Lyapunov exponentl of both models,
calculated values are shown in Table I. The Lyapunov expo-
nent of 2.5 bits/period for the MLP model implies that if we
know the initial conditions with 12-bit accuracy, we can pre-
dict the state after one time step~ 1

32 period! with 1222.5/32
511.9 bits precision, on the average. The 0.1 bit that we
have lost is far less than the RMSE of the model; therefore
we cannotsubscribe a substantial part of the model error to
the unpredictability of the system. It must be either the rep-
resentation of the stateZ or the error in the approximation of
the system functionF that causes the model error.

For a three-dimensional chaotic system, a very convenient
way to validate a model for the system is to compare its
Poincare´ plot to that of the measured data. For the experi-
mental pendulum, the Poincare´ plot is obtained by plotting
points ~u,Du! sampled at a constant value of the driving
phasef, f5(2p/vD)t mod 2p, in a two-dimensional space.
To calculate a Poincare´ section of a prediction model, a time
series generated by the model is needed. This is done by
initializing the model with an arbitrary state, predict 2000
driving cycles ~each driving cycle consisting of 32 time
steps! ahead to let transients die out, and then predict 20000
driving cycles ahead, taking a sample each time the driving
phase is zero. Poincare´ plots of measured, LP model, and
MLP generated data are shown in Figs. 3~a!–3~c!. Note that
due to the use of the nonlinear terms sinun and cosun as
model inputs it is here possible to represent a chaotic system
by a network without a nonlinear hidden layer. The LP
model does capture the overall shape of the attractor, but the
wrinkles occurring at length scales of about 10° are not cap-
tured by the model. The MLP model more closely resembles

FIG. 4. Prediction surface generated by the neural network model~a!. The surface shows how to predictDuf5180° from a given state
~u,Du!f50°. The Poincare´ plot of the measured time series, as shown in Fig. 3~a!, is superimposed on the surface. The surface shows regions
where the motion of the pendulum can be well predicted~flat surface! and regions where much information is lost~steep surface!. In ~b!, the
link between loss of information and steepness of the prediction surface is explained. The steeper the prediction surface, the larger the error
~«1! in the prediction of the stateZn11 will be compared to the error«0 in the estimation of the current stateZn.

FIG. 5. Unstable periodic orbits of period 1~a! and period 7~b!, as calculated from the neural network model. Here the angleu is allowed
to move outside the interval 0–360° to avoid having discontinuities in the plots. The definition of an UPO requires equal values of
u mod 360° and equal values ofDu ~slope of the curve! at the beginning and end of the orbits.
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the measured attractor, but one can see that there is still room
for improvement. We have chosen not to further optimize the
model but to test whether it is satisfactory in its use for chaos
control.

VI. PREDICTION SURFACE

Each point on the two-dimensional~2D! Poincare´ plots
shown in Figs. 3~a!–3~c!, represents a state~u,Du,f! of the
system, withf50. We can extend the plot to a 3D picture
and use the extra dimension to plot the prediction of one of
the state variables. The prediction surface we then get shows
the nonlinearity of the system. In Fig. 4~a! we have plotted
the prediction surface ofDu, with a prediction time of half a
driving period ~16 time steps!. The local steepness of the
surface has a direct relation to the information loss. This is
illustrated in Fig. 4~b!, where it is shown how an initial error

«0 growths to an error«1 if the steepness of the prediction
curve is larger than 1. Since we are dealing with a chaotic
system the average error growth will be positive, correspond-
ing to a positive largest Lyapunov exponent. The prediction
surface can be compared with Fig. 2 in@2#, which shows the
local Lyapunov exponent as a function of position on the
Poincare´ plot of an ideal pendulum@Eq. ~6!#.

VII. SEARCH FOR UNSTABLE PERIODIC ORBITS

For a chaotic system with a periodic driving signal, the
duration of a periodic orbit must be an integer multiple of the
period of the signal~because the phase of the driving signal
is included in the state of the system!. So, when the system is
following an UPO, the state at discrete timen will be equal
to the state at timen1pT, with p the ~integer! period of the
UPO andT the ~integer! number of samples per driving pe-
riod. The search for UPO’s is thus to find a stateZn that
obeys

Zn1pT5Zn, ~15!

whereZn1pT is calculated fromZn, applying

Zn115F~Zn! ~16!

pT times. To find an UPO of preselected periodp, an arbi-
trary initial stateZn is chosen, and then adjusted until Eq.
~15! is satisfied. Adjustments are calculated by a routine that
minimizes the error

E5iZn1pT2Zni2. ~17!

An UPO is found when the error decreases to zero. A differ-
ent initial state must be tried when the error does not reach
zero. For the minimization we used the conjugate gradient
algorithm @20#. Since we use a neural network to approxi-
mate F, derivatives]E/]Zn can be calculated with back-
propagation through time@21#. The algorithm makes it pos-
sible to search systematically for UPO’s of a preselected
period, just by trying many different initial states. In Fig. 5
we show a typical period-1 UPO~a! and a period-7 UPO~b!.
Section VIII describes how these UPO’s were stabilized us-
ing the SCC method.

FIG. 6. Explanation of the SCC control algorithm. The figure
shows three successive maps. The dot at the center of the maps
indicates its fixed point, the dot labeleddZn the deviation from the
fixed point. At timen the system can be steered to any point on the
dashed line through dZn11 ~dpn50! with direction
DdpnF(Z,dp

n,dpn21). Now, as a control criterion, the choice is
made to steer to the axisn2 ~obtained with singular value decom-
position! that corresponds to the maximum shrinking axiss2u2 at
the next transition map at timen12 ~see Ref.@3#!.

FIG. 7. The effect of control is shown by plotting the angleu sampled once each driving cycle. For the period-1 UPO~a!, it takes a while
before the system is close enough to the UPO to enable control. From then on, the angle will have the same value each driving cycle. For
the period-7 UPO~b!, the angle is the same each seventh driving cycle.
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VIII. APPLYING CHAOS CONTROL

In the papers by Hu¨binger et al. @2# and De Korte,
Schouten, and van den Bleek@3#, it is described how chaos
control of the pendulum can be achieved using a semicon-
tinuous control~SCC! extension of the well-known OGY
control scheme. The algorithm changes the control parameter
several times per periodic orbit and uses singular value de-
composition to calculate a maximum shrinking axis; see Fig.
6 for a brief explanation. Hu¨bingeret al. used the equations
of motion of the pendulum as a prediction model, whereas
De Korte, Schouten, and van den Bleek used local linear
models, based on delay coordinates, that were fitted directly
to measured data in the neighborhood of a selected UPO. A
global neural network model provides a third way to create
local linear models. A local linear model is equal to the local
gradient, or Jacobian, of the global model. For a neural net-
work, this gradient is easily obtained with back-propagation
or, if the local linear model has to predict more than one
sampling time ahead, with back-propagation through time.
The advantage of this approach is that it does not requirea
priori knowledge of the system, and that it does not require
that the system has visited the selected UPO during the mea-
surement period.

The control experiments differ from those of Ref.@3# in
how the UPO’s are found and how local linear models are
obtained. The reader is referred to this paper for a detailed
explanation of the control algorithm and the chaos control
experiments. Here we confine ourselves to show the results
in Figs. 7 and 8. Figure 7 is an illustration of the stabilization
of the period-1 and period-7 UPO’s from Fig. 5. Figure 8
shows to what extent the driving force of the pendulum was
disturbed by the control action. The variance of the control

action is 60 times lower than the variance of the driving
force.

IX. CONCLUDING REMARKS

A multilayer feedforward neural network has been devel-
oped that can accurately predict the motion of a chaotic pen-
dulum. The network is trained on a time series of a single
measured variable; additional information about the state of
the system is obtained from delayed values of this variable,
and from the phase of the external driving force.

Poincare´ sections of measured data and model generated
data show that the neural network model has captured the
system’s dynamics well. The prediction surface that can be
computed from the neural network model gives a compre-
hensive insight into the nonlinearity and local predictability
of the pendulum.

The neural network was used to find unstable periodic
orbits of the system, and these orbits were stabilized with the
SCC method. This way, two very different kinds of periodic
behaviors were stabilized, applying only very small control
actions. The advantages of the neural network approach over
the use of local linear models is that~i! they offer the possi-
bility to screen the system’s attractor for UPO’s, and~ii ! they
make use of all the available data.

The results obtained in this study of a simple but real and
nonideal experimental system show that, in order to achieve
chaos control, it is not necessary to measure more than one
of the system’s state variables and that the equations of mo-
tion of the system need not be known. We believe that the
use of self-learning models such as neural networks makes
OGY control applicable to a wide variety of chaotic systems.
In future work, we intend to show that the combination of
self-learning models such as neural networks and SCC con-
trol is useful in controlling and stabilizing higher-
dimensional, experimental systems. As a next step, we will
build a neural network model that does not use any knowl-
edge about the external driving force applied to the pendu-
lum, but uses extra delay coordinates of the measured angle
instead. Then we will extend the method to spatiotemporal
chaotic systems, for which it may be necessary to use mul-
tiple measurements of the same variable at different locations
in the system. The final aim of the work is to experimentally
control the chaotic hydrodynamics of a gas-solids fluidized
bed reactor@4# to enhance chemical conversion and selectiv-
ity.
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